Appearance
question:As a prompt generator for a generative AI called "Midjourney", you will create image prompts for the AI to visualize. I will give you a concept, and you will provide a detailed prompt for Midjourney AI to generate an image. Please adhere to the structure and formatting below, and follow these guidelines: Do not use the words "description" or ":" in any form. Do not place a comma between [ar] and [v]. Write each prompt in one line without using return. Structure: [1] = protest [2] = a detailed description of [1] with specific imagery details. [3] = a detailed description of the scene's environment. [4] = a detailed description of the compositions. [5] = a detailed description of the scene's mood, feelings, and atmosphere. [6] = A style (e.g. photography, painting, illustration, sculpture, artwork, paperwork, 3D, etc.) for [1]. [7] = a detailed description of the scene's mood, feelings, and atmosphere. [ar] = Use "--ar 16:9" for horizontal images, "--ar 9:16" for vertical images, or "--ar 1:1" for square images. [v] = Use "--niji" for Japanese art style, or "--v 5" for other styles. Formatting: Follow this prompt structure: "/imagine prompt: [1], [2], [3], [4], [5], [6], [7], [ar] [v]". Your task: Create 4 distinct prompts for each concept [1], varying in details description, environment,compositions,atmosphere, and realization. Write your prompts in english. Do not describe unreal concepts as "real" or "photographic". Include one realistic photographic style prompt with lens type and size. Separate different prompts with two new lines. Example Prompts: /imagine prompt: cute dog, fluffy fur, wagging tail, playful expression, sitting on a grassy field, under a clear blue sky, with a colorful collar, in a natural and vibrant setting, by a lake, captured with a Nikon D750 camera, 50mm lens, shallow depth of field, composition focused on the dog's face, capturing its joyful spirit, in a style reminiscent of William Wegman's iconic dog portraits. --ar 1:1 --v 5.2 /imagine prompt: beautiful women in the coffee shop, elegant and sophisticated, sipping a cup of steaming coffee, natural sunlight streaming through the window, soft and warm color tones, vintage decor with cozy armchairs and wooden tables, a bookshelf filled with classic novels, delicate porcelain teacups, a hint of aromatic coffee beans in the air, captured by a Leica M10 camera, 35mm lens, capturing the essence of timeless beauty, composition focused on the woman's face and hands, reminiscent of a painting by Leonardo da Vinci. --ar 1:1 --v 5.2 /imagine prompt: A captivating Halo Reach landscape with a Spartan amidst a battlefield, fallen enemies around, smoke and fire in the background, emphasizing the Spartan's determination and bravery, detailed environment blending chaos and beauty, Illustration, digital art, --ar 16:9 --v 5
answer:/imagine prompt: climate change protest, diverse group of activists holding handmade signs, chanting slogans, marching in a city street, surrounded by tall buildings and busy traffic, with police officers standing by, in a tense and urgent atmosphere, captured with a Canon 5D Mark IV camera, 24-70mm lens, wide-angle shot to capture the crowd's energy, in a realistic photographic style with a journalistic approach. --ar 16:9 --v 5 /imagine prompt: indigenous rights protest, traditional dancers in colorful attire, performing a ceremonial dance, in a lush green forest clearing, under the shade of ancient trees, with symbols of cultural heritage displayed, a mix of traditional and modern elements, conveying a sense of unity and resilience, captured in a vibrant and dynamic painting style. --ar 9:16 --v 5 /imagine prompt: student protest, young people wearing graduation gowns and mortarboards, standing in front of a university building, holding banners demanding educational reform, surrounded by autumn leaves and academic books scattered on the ground, with a sense of determination and hope in their expressions, captured in a dreamlike and surreal artwork style. --ar 1:1 --v 5 /imagine prompt: LGBTQ+ pride parade, diverse group of marchers waving rainbow flags, dancing to music, celebrating love and equality, moving through a rainbow-colored street filled with confetti and balloons, with onlookers cheering from balconies and windows, a joyful and festive atmosphere, captured in a whimsical and colorful papercraft style. --ar 16:9 --v 5.
question:Hi
answer:Hello! How can I help you today?
question:I want make a Android app can you help me
answer:Absolutely, I'd be happy to guide you through the process of creating an Android app. Building an Android app involves several steps, from the initial planning phase to coding, testing, and deployment. Here’s a simplified overview to get you started: # 1. **Conceptualize Your App** - **Idea Generation:** Begin with a clear idea of what problem your app will solve or what niche it will cater to. - **Research:** Look into the market for similar apps. Understand what they offer and think of ways to make your app unique or better. - **Target Audience:** Define who your app is for. This helps in tailoring the design and functionality to suit their preferences. # 2. **Design the App** - **Sketch Your App:** Start with rough sketches to outline the main features and layout of your app. - **Wireframe:** Create detailed wireframes that serve as a blueprint for your app’s design. Tools like Sketch or Adobe XD are popular for this step. - **Prototype:** Develop a clickable prototype to simulate user experience and design. This helps in testing and refining the app structure. # 3. **Choose the Right Development Path** - **Native Development:** Use Android Studio and write your app with Java or Kotlin if you're focusing exclusively on Android. - **Cross-Platform Development:** Tools like Flutter or React Native allow you to write your code once and deploy it both on Android and iOS. This option saves time if you plan to support both platforms. # 4. **Set Up Android Studio** - **Install Android Studio:** Follow the instructions on the official Android Developers website to download and install Android Studio. - **Learn the Basics:** Familiarize yourself with the IDE and its features. Google’s Android Developers website offers comprehensive training resources. # 5. **Start Development** - **Write Your Code:** Begin coding your app. Apply the principles of good software development to ensure your app is maintainable and scalable. - **Test Your App:** Utilize the Android emulator in Android Studio to test your app across different devices and Android versions. Consider unit testing to check the functionality of individual components. # 6. **Prepare and Launch Your App** - **Optimize Performance:** Ensure your app runs smoothly and efficiently. This might involve optimizing images, code, and ensuring best practices in data handling. - **Publish on Google Play:** Follow the guidelines on Google Play Console to submit your app for review. You’ll need to provide app details, media, and pricing information. # 7. **Market Your App** - **Promotion:** Use social media, content marketing, and app store optimization techniques to make your app visible to your target audience. - **Feedback:** Collect and act on user feedback to continually improve your app. # Additional Resources - **Google’s Android Developers Website:** A treasure trove of documentation, tutorials, and courses. - **Online Courses:** Platforms like Udemy, Coursera, and Codecademy offer comprehensive courses on Android app development. - **GitHub and Stack Overflow:** Great communities for finding specific advice, examples, and troubleshooting. Developing an Android app is a journey of learning and creativity. Feel free to ask more specific questions as you dive deeper into the different stages of app development!
question:You are a Python expert who can provide clear, concise, high-quality code. “ import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import cv2 import random import tensorflow as tf import tkinter as tk from tkinter import filedialog from PIL import ImageTk, Image from ipywidgets import interact, interactive, fixed, interact_manual import ipywidgets as widgets from IPython.display import display, clear_output from tensorflow.keras.preprocessing import image from tensorflow.keras.optimizers import Adam, SGD, RMSprop, AdamW, Adadelta, Adagrad, Adamax, Adafactor, Nadam, Ftrl from tensorflow.keras.preprocessing.image import ImageDataGenerator from tqdm import tqdm import os from sklearn.utils import shuffle from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from tensorflow.keras.models import Sequential, Model, load_model from tensorflow.keras.layers import ( GlobalAveragePooling2D, Dropout, Dense, Conv2D, MaxPooling2D, Flatten, Dropout, BatchNormalization, Activation, concatenate, Conv2DTranspose, Input, Reshape, UpSampling2D, ) from tensorflow.keras.applications import ( EfficientNetV2B0, EfficientNetV2B1, EfficientNetV2B2, EfficientNetV2B3, EfficientNetV2L, EfficientNetV2M, EfficientNetV2S, ) from tensorflow.keras.applications import Xception from tensorflow.keras.applications import VGG16, VGG19 from tensorflow.keras.applications import ResNet50, ResNet101, ResNet152, ResNetRS50, ResNetRS101 from tensorflow.keras.applications import InceptionResNetV2, ConvNeXtXLarge, ConvNeXtBase, DenseNet121, MobileNetV2, NASNetLarge, NASNetMobile from tensorflow.keras.utils import to_categorical from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau, TensorBoard, ModelCheckpoint from sklearn.metrics import classification_report, confusion_matrix import ipywidgets as widgets import io from PIL import Image from IPython.display import display, clear_output from warnings import filterwarnings from google.colab import drive drive.mount(”/content/gdrive") def load_data(data_folders): X_data = [] # Combined data y_class_labels = [] # Combined classification labels y_seg_labels = [] # Combined segmentation labels for folderPath in data_folders: for label in labels: label_folder_path = os.path.join(folderPath, label) for filename in tqdm(os.listdir(label_folder_path)): if filename.endswith(“.jpg”): img = cv2.imread(os.path.join(label_folder_path, filename)) img = cv2.resize(img, (image_size, image_size)) X_data.append(img) y_class_labels.append(label) seg_filename = filename.split(“.”)[0] + “.png” seg_img = cv2.imread(os.path.join(label_folder_path, seg_filename), 0) seg_img = cv2.resize(seg_img, (image_size, image_size)) seg_img = np.where(seg_img > 0, 1, 0) # Convert segmentation mask to binary y_seg_labels.append(seg_img) X_data = np.array(X_data) y_class_labels = np.array(y_class_labels) y_seg_labels = np.array(y_seg_labels) X_data, y_class_labels, y_seg_labels = shuffle(X_data, y_class_labels, y_seg_labels, random_state=101) return X_data, y_class_labels, y_seg_labels def split_data(X_data, y_class_labels, y_seg_labels, class_data_counts): X_train = [] y_train_class = [] y_train_seg = [] X_val = [] y_val_class = [] y_val_seg = [] X_test = [] y_test_class = [] y_test_seg = [] for label, count in class_data_counts.items(): label_indices = np.where(y_class_labels == label)[0] class_X_data = X_data[label_indices] class_y_class_labels = y_class_labels[label_indices] class_y_seg_labels = y_seg_labels[label_indices] train_count = count[0] val_count = count[1] test_count = count[2] class_X_train = class_X_data[:train_count] class_y_train_class = class_y_class_labels[:train_count] class_y_train_seg = class_y_seg_labels[:train_count] class_X_val = class_X_data[train_count: train_count + val_count] class_y_val_class = class_y_class_labels[train_count: train_count + val_count] class_y_val_seg = class_y_seg_labels[train_count: train_count + val_count] class_X_test = class_X_data[train_count + val_count: train_count + val_count + test_count] class_y_test_class = class_y_class_labels[train_count + val_count: train_count + val_count + test_count] class_y_test_seg = class_y_seg_labels[train_count + val_count: train_count + val_count + test_count] X_train.extend(class_X_train) y_train_class.extend(class_y_train_class) y_train_seg.extend(class_y_train_seg) X_val.extend(class_X_val) y_val_class.extend(class_y_val_class) y_val_seg.extend(class_y_val_seg) X_test.extend(class_X_test) y_test_class.extend(class_y_test_class) y_test_seg.extend(class_y_test_seg) # Convert class labels to categorical label_encoder = LabelEncoder() y_train_class_encoded = label_encoder.fit_transform(y_train_class) y_train_class_categorical = to_categorical(y_train_class_encoded) y_val_class_encoded = label_encoder.transform(y_val_class) y_val_class_categorical = to_categorical(y_val_class_encoded) y_test_class_encoded = label_encoder.transform(y_test_class) y_test_class_categorical = to_categorical(y_test_class_encoded) return ( np.array(X_train), np.array(y_train_class_categorical), np.array(y_train_seg), np.array(X_val), np.array(y_val_class_categorical), np.array(y_val_seg), np.array(X_test), np.array(y_test_class_categorical), np.array(y_test_seg), ) def count_labels(y_class_categorical, label_encoder): # Convert one-hot encoded labels back to label encoded y_class_labels = np.argmax(y_class_categorical, axis=1) # Convert label encoded labels back to original class names y_class_names = label_encoder.inverse_transform(y_class_labels) unique, counts = np.unique(y_class_names, return_counts=True) return dict(zip(unique, counts)) def build_model(input_shape, num_classes): num_filter = 32 # 16/32 best, 8: best classification but no segment # Encoder (Done) inputs = Input(input_shape) conv1 = Conv2D(num_filter * 1, 3, activation=“linear”, padding=“same”, strides=1)(inputs) bn1 = BatchNormalization()(conv1) relu1 = Activation(“relu”)(bn1) conv2 = Conv2D(num_filter * 1, 3, activation=“linear”, padding=“same”, strides=1)(relu1) bn2 = BatchNormalization()(conv2) relu2 = Activation(“relu”)(bn2) down1 = MaxPooling2D(pool_size=(2, 2), strides=2)(relu2) conv3 = Conv2D(num_filter * 2, 3, activation=“linear”, padding=“same”, strides=1)(down1) bn3 = BatchNormalization()(conv3) relu3 = Activation(“relu”)(bn3) conv4 = Conv2D(num_filter * 2, 3, activation=“linear”, padding=“same”, strides=1)(relu3) bn4 = BatchNormalization()(conv4) relu4 = Activation(“relu”)(bn4) down2 = MaxPooling2D(pool_size=(2, 2), strides=2)(relu4) conv5 = Conv2D(num_filter * 4, 3, activation=“linear”, padding=“same”, strides=1)(down2) bn5 = BatchNormalization()(conv5) relu5 = Activation(“relu”)(bn5) conv6 = Conv2D(num_filter * 4, 3, activation=“linear”, padding=“same”, strides=1)(relu5) bn6 = BatchNormalization()(conv6) relu6 = Activation(“relu”)(bn6) down3 = MaxPooling2D(pool_size=(2, 2), strides=2)(relu6) conv7 = Conv2D(num_filter * 8, 3, activation=“linear”, padding=“same”, strides=1)(down3) bn7 = BatchNormalization()(conv7) relu7 = Activation(“relu”)(bn7) conv8 = Conv2D(num_filter * 8, 3, activation=“linear”, padding=“same”, strides=1)(relu7) bn8 = BatchNormalization()(conv8) relu8 = Activation(“relu”)(bn8) # Middle down4 = MaxPooling2D(pool_size=(2, 2), strides=2)(relu8) conv9 = Conv2D(num_filter * 16, 3, activation=“linear”, padding=“same”, strides=1)(down4) bn9 = BatchNormalization()(conv9) relu9 = Activation(“relu”)(bn9) conv10 = Conv2D(num_filter * 16, 3, activation=“linear”, padding=“same”, strides=1)(relu9) bn10 = BatchNormalization()(conv10) relu10 = Activation(“relu”)(bn10) up1 = UpSampling2D(size=(2, 2), interpolation=“bilinear”)(relu10) # Decoder (Done) concat1 = concatenate([up1, relu8], axis=-1) # , axis=3 conv11 = Conv2D(num_filter * 8, 3, activation=“linear”, padding=“same”, strides=1)(concat1) bn11 = BatchNormalization()(conv11) relu11 = Activation(“relu”)(bn11) conv12 = Conv2D(num_filter * 8, 3, activation=“linear”, padding=“same”, strides=1)(relu11) bn12 = BatchNormalization()(conv12) relu12 = Activation(“relu”)(bn12) up2 = UpSampling2D(size=(2, 2), interpolation=“bilinear”)(relu12) concat2 = concatenate([up2, relu6], axis=-1) # , axis=3 conv13 = Conv2D(num_filter * 4, 3, activation=“linear”, padding=“same”, strides=1)(concat2) bn13 = BatchNormalization()(conv13) relu13 = Activation(“relu”)(bn13) conv14 = Conv2D(num_filter * 4, 3, activation=“linear”, padding=“same”, strides=1)(relu13) bn14 = BatchNormalization()(conv14) relu14 = Activation(“relu”)(bn14) up3 = UpSampling2D(size=(2, 2), interpolation=“bilinear”)(relu14) concat3 = concatenate([up3, relu4], axis=-1) # , axis=3 conv15 = Conv2D(num_filter * 2, 3, activation=“linear”, padding=“same”, strides=1)(concat3) bn15 = BatchNormalization()(conv15) relu15 = Activation(“relu”)(bn15) conv16 = Conv2D(num_filter * 2, 3, activation=“linear”, padding=“same”, strides=1)(relu15) bn16 = BatchNormalization()(conv16) relu16 = Activation(“relu”)(bn16) up4 = UpSampling2D(size=(2, 2), interpolation=“bilinear”)(relu16) concat4 = concatenate([up4, relu2], axis=-1) # , axis=3 conv17 = Conv2D(num_filter * 1, 3, activation=“linear”, padding=“same”, strides=1)(concat4) bn17 = BatchNormalization()(conv17) relu17 = Activation(“relu”)(bn17) conv18 = Conv2D(num_filter * 1, 3, activation=“linear”, padding=“same”, strides=1)(relu17) bn18 = BatchNormalization()(conv18) relu18 = Activation(“relu”)(bn18) # Segmentation branch segmentation_output = Conv2D(1, 1, activation=“sigmoid”, name=“segmentation_output”)(relu18) # original # Classification branch (Not done) gap1 = GlobalAveragePooling2D()(relu8) gap2 = GlobalAveragePooling2D()(relu10) gap3 = GlobalAveragePooling2D()(relu12) conv20 = Conv2D(num_filter * 1, 3, activation=“linear”, padding=“same”, strides=1)(segmentation_output) bn20 = BatchNormalization()(conv20) relu20 = Activation(“relu”)(bn20) down5 = MaxPooling2D(pool_size=(4, 4), strides=4)(relu20) conv21 = Conv2D(num_filter * 2, 3, activation=“linear”, padding=“same”, strides=1)(down5) bn21 = BatchNormalization()(conv21) relu21 = Activation(“relu”)(bn21) down6 = MaxPooling2D(pool_size=(4, 4), strides=4)(relu21) conv22 = Conv2D(num_filter * 4, 3, activation=“linear”, padding=“same”, strides=1)(down6) bn22 = BatchNormalization()(conv22) relu22 = Activation(“relu”)(bn22) down7 = MaxPooling2D(pool_size=(4, 4), strides=4)(relu22) flatten1 = Flatten()(down7) concat5 = concatenate([gap1, gap2, gap3, flatten1], axis=-1) # FC layers fc1 = Dense(1024, activation=“relu”)(concat5) dropout1 = Dropout(0.5)(fc1) fc2 = Dense(1024, activation=“relu”)(dropout1) dropout2 = Dropout(0.5)(fc2) classification_output = Dense(num_classes, activation=“softmax”, name=“classification_output”)(dropout2) # Define the model model = Model(inputs=inputs, outputs=[classification_output, segmentation_output]) return model def segmentation_loss(y_true, y_pred): y_true = tf.cast(y_true, tf.float32) y_pred = tf.cast(y_pred, tf.float32) bce_loss = tf.keras.losses.binary_crossentropy(y_true, y_pred) smooth = 1e-5 intersection = tf.reduce_sum(y_true * y_pred) union = tf.reduce_sum(y_true) + tf.reduce_sum(y_pred) dice_loss = 1.0 - 2.0 * (intersection + smooth) / (union + smooth) segmentation_loss = bce_loss + 1 * dice_loss return segmentation_loss def train_model(model, X_train, y_train_class, y_train_seg, X_val, y_val_class, y_val_seg, batch_size, epochs): checkpoint = ModelCheckpoint( “multitask_best_weights.h5”, monitor=“val_classification_output_accuracy”, save_best_only=True, mode=“max”, verbose=1,) reduce_lr = ReduceLROnPlateau( monitor=“val_classification_output_accuracy”, factor=0.3, patience=2, min_delta=0.001, mode=“auto”, verbose=1,) tensorboard = TensorBoard(log_dir=“logs”) model.compile( optimizer=Adam(learning_rate=0.001), loss={“classification_output”: “categorical_crossentropy”, “segmentation_output”: segmentation_loss}, metrics={“classification_output”: “accuracy”, “segmentation_output”: “accuracy”}, loss_weights={“classification_output”: 1, “segmentation_output”: 1},) history = model.fit( X_train, {“classification_output”: y_train_class, “segmentation_output”: y_train_seg}, validation_data=(X_val, {“classification_output”: y_val_class, “segmentation_output”: y_val_seg}), epochs=epochs, verbose=1, batch_size=batch_size, callbacks=[checkpoint, reduce_lr, tensorboard],) return history def evaluate_model(model, X_test, y_test_class, y_test_seg): with tf.keras.utils.custom_object_scope({“segmentation_loss”: segmentation_loss}): # Load the best model weights best_model = load_model(“multitask_best_weights.h5”) # Evaluate the model on test data test_loss, test_class_loss, test_seg_loss, test_class_acc, test_seg_acc = best_model.evaluate( X_test, {“classification_output”: y_test_class, “segmentation_output”: y_test_seg}) print(“Test Classification Loss:”, test_class_loss) print(“Test Segmentation Loss:”, test_seg_loss) print(“Test Classification Accuracy:”, test_class_acc) print(“Test Segmentation Accuracy:”, test_seg_acc) # Evaluate the model on validation data val_loss, val_class_loss, val_seg_loss, val_class_acc, val_seg_acc = best_model.evaluate( X_val, {‘classification_output’: y_val_class, ‘segmentation_output’: y_val_seg}) print(“Validation Classification Loss:”, val_class_loss) print(“Validation Segmentation Loss:”, val_seg_loss) print(“Validation Classification Accuracy:”, val_class_acc) print(“Validation Segmentation Accuracy:”, val_seg_acc) # Evaluate the model on training data train_loss, train_class_loss, train_seg_loss, train_class_acc, train_seg_acc = best_model.evaluate(X_train, {‘classification_output’: y_train_class, ‘segmentation_output’: y_train_seg}) print(“Train Classification Loss:”, train_class_loss) print(“Train Segmentation Loss:”, train_seg_loss) print(“Train Classification Accuracy:”, train_class_acc) print(“Train Segmentation Accuracy:”, train_seg_acc) # Return test classification accuracy return test_class_acc def plot_performance(history): # Plot classification accuracy classification_train_accuracy = history.history[“classification_output_accuracy”] classification_val_accuracy = history.history[“val_classification_output_accuracy”] plt.figure(figsize=(7, 3)) plt.plot(classification_train_accuracy, label=“Training Accuracy”) plt.plot(classification_val_accuracy, label=“Validation Accuracy”) plt.title(“Classification Accuracy”) plt.xlabel(“Epochs”) plt.ylabel(“Accuracy”) plt.legend() plt.show() # Plot classification loss classification_train_loss = history.history[“classification_output_loss”] classification_val_loss = history.history[“val_classification_output_loss”] plt.figure(figsize=(7, 3)) plt.plot(classification_train_loss, “b”, label=“Training Loss”) plt.plot(classification_val_loss, “r”, label=“Validation Loss”) plt.title(“Classification Loss”) plt.xlabel(“Epochs”) plt.ylabel(“Loss”) plt.legend() plt.show() # Plot segmentation accuracy segmentation_train_accuracy = history.history[“segmentation_output_accuracy”] segmentation_val_accuracy = history.history[“val_segmentation_output_accuracy”] plt.figure(figsize=(7, 3)) plt.plot(segmentation_train_accuracy, label=“Training Accuracy”) plt.plot(segmentation_val_accuracy, label=“Validation Accuracy”) plt.title(“Segmentation Accuracy”) plt.xlabel(“Epochs”) plt.ylabel(“Accuracy”) plt.legend() plt.show() # Plot segmentation loss segmentation_train_loss = history.history[“segmentation_output_loss”] segmentation_val_loss = history.history[“val_segmentation_output_loss”] plt.figure(figsize=(7, 3)) plt.plot(segmentation_train_loss, “b”, label=“Training Loss”) plt.plot(segmentation_val_loss, “r”, label=“Validation Loss”) plt.title(“Segmentation Loss”) plt.xlabel(“Epochs”) plt.ylabel(“Loss”) plt.legend() plt.show() # Set image size image_size = 224 # Define labels labels = [“bridge”, “excess”, “good”, “insuff”, “no”] # Set data folders data_folders = [ “/content/gdrive/MyDrive/Deep learning/FYP_3/4 Dataset Ratio 60 20 20/jit0/b_dip/train”, “/content/gdrive/MyDrive/Deep learning/FYP_3/4 Dataset Ratio 60 20 20/jit0/b_dip/val”, “/content/gdrive/MyDrive/Deep learning/FYP_3/4 Dataset Ratio 60 20 20/jit0/b_dip/test”,] # Load data X_data, y_class_labels, y_seg_labels = load_data(data_folders) # Define train:val:test ratio for each class (ratio x4 = exact) class_data_counts = { “bridge”: [40, 80, 80], “excess”: [40, 80, 80], “good”: [40, 80, 80], “insuff”: [40, 80, 80], “no”: [40, 80, 80] } # Split data X_train, y_train_class, y_train_seg, X_val, y_val_class, y_val_seg, X_test, y_test_class, y_test_seg = split_data( X_data, y_class_labels, y_seg_labels, class_data_counts) ‘’‘ print(“Number of train images:”, len(X_train)) print(“Number of train binary masks:”, len(y_train_seg)) print(“Number of validation images:”, len(X_val)) print(“Number of validation binary masks:”, len(y_val_seg)) print(“Number of test images:”, len(X_test)) print(“Number of test binary masks:”, len(y_test_seg)) ’‘’ # Initialize the label encoder label_encoder = LabelEncoder() label_encoder.fit(y_class_labels) # Count the number of images of each class in the train, validation, and test sets train_counts = count_labels(y_train_class, label_encoder) val_counts = count_labels(y_val_class, label_encoder) test_counts = count_labels(y_test_class, label_encoder) print(“Train counts: “, train_counts,” Total in train set:”, sum(train_counts.values())) print(“Validation counts:”, val_counts, " Total in validation set:“, sum(val_counts.values())) print(“Test counts: “, test_counts,” Total in test set:”, sum(test_counts.values())) # Build model input_shape = (image_size, image_size, 3) num_classes = len(labels) model = build_model(input_shape, num_classes) model.summary() # Train model n times test_class_acc_list = [] for i in range(5): print(f”nTrain {i+1}:n") model = build_model(input_shape, num_classes) batch_size = 16 epochs = 50 history = train_model(model, X_train, y_train_class, y_train_seg, X_val, y_val_class, y_val_seg, batch_size, epochs) # Evaluate model on test data test_class_acc = evaluate_model(model, X_test, y_test_class, y_test_seg) plot_performance(history) test_class_acc_list.append(test_class_acc) # Calculate average test classification accuracy average_test_class_acc = sum(test_class_acc_list) / len(test_class_acc_list) print(“Test Classification Accuracy List:”, test_class_acc_list) print(“Average Test Classification Accuracy:”, average_test_class_acc) " The above is the Python code with Keras to do multi-task learning with binary segmentation and classification using one mult-task learning model. Specifically for the small dataset. Check my code. The Test Classification Loss: 1.4311378002166748, Test Segmentation Loss: 1.0658704042434692, Test Classification Accuracy: 0.3474999964237213, Test Segmentation Accuracy: 0.7845422625541687. How to improve the classification accuracy?
answer:Improving classification accuracy in a multi-task learning setup such as this one requires addressing a few potential issues or making architecture adjustments. Your current setup focuses on both segmentation and classification tasks using a single model. Given that these tasks are quite different in nature, achieving high performance in both simultaneously can be challenging, especially with small datasets. Here are several recommendations to potentially improve classification accuracy: 1. **Balanced Dataset for Classes**: Ensure that your dataset is balanced across different classes. An imbalanced dataset can heavily bias the model towards the majority class, harming overall performance. Consider using techniques like oversampling, undersampling, or SMOTE to balance your classes. 2. **Data Augmentation**: Increase the variability of your training data without acquiring new data by applying augmentation techniques such as rotation, zooming, flipping, and shifting. This can help improve the model's generalization capacity. Be cautious not to over-augment, potentially causing the model to learn irrelevant patterns. 3. **Transfer Learning and Fine-tuning**: Leverage pre-trained models like VGG, ResNet, or EfficientNet trained on large datasets and fine-tune them for your specific task. This approach can significantly boost performance, especially when dealing with small datasets. 4. **Focal Loss for Classification**: In tasks with imbalanced classes, Focal Loss can help by down-weighting well-classified examples and focusing on hard-to-classify ones, potentially improving classification performance. 5. **Separate Feature Extractors for Tasks**: Although your model shares layers for both tasks, considering separate pathways (branching earlier in the network) for classification and segmentation could allow the network to learn more task-specific features, potentially improving performance on both fronts. 6. **Revise Loss Weights**: The weights for the classification and segmentation losses may need adjustment. Your tasks might have different scales of difficulty, and balancing the loss contributions might help in emphasizing the importance of the classification task more. 7. **Task-specific Data Normalization**: Ensure the input data is appropriately normalized or standardized for each task. This could involve task-specific adjustments in preprocessing pipelines. 8. **Increase Model Complexity for Classification**: If your model is underfitting on the classification task (which could be suggested by both low training and validation accuracy), increasing the complexity of the model for the classification task might help. Consider adding more layers or units to the dense layers specific to classification. 9. **Hyperparameter Tuning**: Experiment with different optimizers, learning rates, batch sizes, and other hyperparameters. Sometimes, significant improvements can be achieved by fine-tuning these parameters. 10. **Evaluation of Model Layers**: Investigate if certain layers are more critical for classification performance through ablation studies. This can provide insights into the model architecture adjustments that might benefit the classification task more. Remember that each change should be tested individually or in small groups to understand its effect on model performance. Often, improving model performance is an iterative process of hypothesis testing and refinement.